
Source of Acquisition
NASA Ames Research Center ,

Source Update Capture in Information Agents

Naveen Ashish*, Deepak Kulkam? and Yao Wang
NASA Ames Research Center

MS 26913 Moffett Field CA 94035
(ashish, kulkarni, yxwang}@email.arc.nasa.gov

Abstract
In this paper we present strategies for successfully
capturing updates at Web sources. Web-based
information agents provide integrated access to
autonomous Web sources that can get updated. For many
information agent ' applications we are interested in
knowing when a Web source to which the application
provides access, has been updated. We may also be
interested in capturing all the updates at a Web source
over a period of time i.e., detecting the updates and, for
each update retrieving and storing the new version of
data. Previous work on update and change detection by
polling does not adequately address this problem. We
present strategies for intelligently polling a Web source
for efficiently capturing changes at the source.

1 Introduction
An important issue with internet information agents is
that of addressing the problem of updates at the remote
Web sources being integrated. Information agents
(Cohen 2000; Knoblock, Minton et al. 2001; Barish and
Knoblock 2002; Doan and Halevy 2002; Kambhampati,
Nambiar et al. 2002; Zadorozhny, Raschid et al. 2002)
and other Web-based information extraction and
integration systems (Davulcu, Yang et al. 2000;
Kushmerick 2000; Byers, Freire et al. 2001; Popa,
Velegrakis et al. 2002) provide integrated access to data
residing in different Web sources. These Web sources
are autonomous and the data on the Web pages at these
sources may change. For performance optimization,
information agents often cache or materialize data from
_. the remote Web .soyrces locally (Adalj, Candan et al.
1997; Ashish, Knoblock et al. 2002). When updates or
changes occur at Web sources, the cached data becomes
inconsistent with the original data. To avoid providing
the user with stale or inconsistent data, the information
agent must update the cache as changes take place at the
original Web sources. The information agent may also
require access to the different updated versions of data at
a Web source over a period of time. For instance the
main headline story at the CNN news site
(www.cnn.com) gets updated every hour or so (the same
news story may get updated or a different news item

* Naveen Ashish is with the USRA Research Institute for Advanced
Computer Science at NASA Ames.

appears as the headline news) and an information agent
may require access to all the different headline news
stories [we refer to the distinct data items (i.e., stories) as
versions] that appeared as headline news over a
particular day. We use the term capture for the process
of detecting an update and then retrieving and storing
the new updated version of the data from a source. The
information agent may also be monitoring (Barish and
Knoblock 2002) a source (via wrappers) and want to be
notified when an update has taken place.
The time (and frequency) of changes at many Web
sources are not known in advance. As a result, the
information agent must poll the Web source(s) to check
for updates and changes. To minimize the probability of
missing an update we must poll the sources very
frequently. However this high polling frequency may
not be feasible due to limited network and computational
resources. In fact many sources would not allow polling
the source at a high frequency as this causes an
undesirable load on their Web server. In this paper we
present the initial results of our work in progress on
capturing changes at a Web source while polling the
source only a limited number of times. Our approach is
based on our observation of regularities of update times
at many autonomous Web sources.

The problem of detecting changes at a source and
synchronizing the local copy has been studied in many
contexts such as Web data sources, Web proxy servers,
Internet crawlers and client-server database systems.
(Cho and- Garcia-Molina 2000) describes an approach to
refreshing the local copy of an autonomous data source
to keep the copy up-to-date. (Cho and Ntoulas 2002)
presents a sampling-based strategy for keeping local
copies of data up-to-date in a World Wide Web or data
warehousing environment. (Barish and Obraczka 2000)
presents a survey of a variety of caching techniques for
the World Wide Web. (Bright and Raschid 2002)
presents a Web caching approach where a trade off can
be made between the recency of the retrieved
information versus the latency to retrieve it. Finally there
is work on synchronizing updates in data warehousing
(Labrinidis and Roussopoulos May 2000) and in client
server database system (Gal and Eckstein 2001)
environments. The above efforts have provided

capture almost all the updates and achieve a Change
Recall of close to 1.0 The key problem is thus of
deciding at what times to poll a source such that the
Change Recall is maximized. We define this formally.

Definition: Polling Strategy
A "polling strategy" is defined as a tuple cT, S> where T
is a time period (such as an hour, day month etc.) over
which the polling times repeat in a cycle and,
S = {SI&,, S,} is a set of times at which we poll the
source within each time period T.
So a strategy defined by <hour, {5,15,45}> implies that
in each hour we poll 3 times, at 5 minutes past, 15
minutes and 45 minutes past the hour.

We now state the Change Recall optimization problem
formally:

Given:
.O = a Web source
T = time period
N = maximum number of times we can poll S in the time
period T
H = previous history of updates at the source
Generate:
A polling strategy <T,S> such that the Change Recall is
maximized, where we poll at most N times in the time
period T.

Note that in certain applications we may also be
interested in optimizing other metrics i.e., minimizing
the average age or maximizing the freshness. A polling
strategy that maximizes Change Recall, can also be used
to minimize the average age of cached data items and in
fact performs better than existing strategies in many
cases !

3. Polling Strategy
We make use of the historical data for update times at a
Web source to estimate the probability of missing
updates with any polling strategy. Like existing
approaches, our approach is based on the assumption that
the historical pattern of updates (over an appropriate time
period) at-a Web source is a good predictor of the future
pattern of updates at that source. We thus first talk about
our observations of update time distributions at Web
sources and then present approaches for generating an
optimal polling strategy.

3.1 Update Time Distributions
While a source may change anytime, the times of
updates at many sources do follow certain regular
distributions . In (Cho and Ntoulas 2002) it was shown
that the Poisson process effectively models change at the
Web sources they sampled. However there is a
difference in behavior between all Web pages of the
entire Web and a particular set of Web pages. While

hundreds of millions of Web pages in an entire set can be
considered to have been changed by a random process on
average, for a particular set of pages as well as different
scales of study, the randomness of the change
occurrences has to be addressed before we can make
confident predictions about the polling. While the
Poisson process may model updates of web sources in
general, specific sources may exhibit update distributions
that are distinctly different. It is our observation that for
many sources we can use more accurate models to fit the
distribution of update times at a Web source. For
instance for the ATIS source a log of update times for a
particular airport is shown in Table 1. Most of the
updates occur around 5 min past or 15 min past the hour.
This distribution is consistent across several months. Or
consider a source such as Hollywood.com. The "new

(http://www.hoIlvwood.com/movies/this week.asD)
changes once a week; mostly on the thursday of the week
,announcing new movies releasing on Friday or the
weekend. The fact that a source gets updated according
to some such distribution and knowledge of this
distribution can be exploited to come up with a smart
strategy for polling that source. For instance from the
observation that for the above ATIS messages, there are
mostly 2 messages published per hour, the first by 5 min
past the hour and the second by 15 min past the hour ,
we could poll the source at 5 min and 15 min past the
hour and we would capture most of the updates. For the
hollywood.com. source we could just poll once a week,
every thursday when the movie screenings change. Of
course many update distributions will not be that simple.
Our second observation is that the distribution of updates
of a web page would depend on semantics of the web
page itself. For example, the likelihood of updates to the
CNN.com home page in a short time are higher if the
page is reporting a breaking story or a very rapidly
changing event.

movies this week" Page

So the update distribution is indeed helpful in deciding a
good polling strategy. The problem is to come up with an
approach to generate such a strategy automatically given
the update distribution. We now describe two alternative
approaches to generating the optimal polling strategy.
(1) Empirical Approach: We can systematically consider

all possible polling times for an interval of interest and
can use the historical information to compute how many
changes would have been missed if we had used
particular polling strategy. If this can be done in a
computationally efficient manner, the approach can be
used to find an optimal strategy.
(2) Theoretical Modeling Approach: We can model the
update patterns using an appropriate probability
distribution and do analysis based on this probability
distribution to infer the best polling strategy. This
approach has been taken in previous- work and is
computationally efficient.

P

, y 1

' f'
1

at the end of this interval at t=20). Similarly we poll once
at t=10, t=30 ,t=35 and t=40.

1
0.8
0.6
0.4
0.2
0

Fig 2. Update Probability Distributions

Note that there is a possibility of missing an update in
this case. Two or more updates (A and B) could occur
between t=10 and t=20 and we will capture only one of
them. Also two or more updates (B and C) could occur
between t=30 and t=35. So far we have assigned a total
of 5 polls per hour. Suppose we could poll more than 5
times. At what times should we poll additionally ?
Polling more in a multiple update intervals decreases the
probability of missing an update in that interval. We will
examine shortly as to how exactly this probability varies
with the number of times we poll in the interval. SO any
additional polls should be assigned to the multiple update
intervals. But there could be many such multiple update
intervals. So how do we relatively assign the additional
polls between these intervals ? For instance in the current
example we have 2 multiple update intervals and if we
had a total of 5 additional polls we could assign 1
additional poll to the first multiple update interval and 4
to the second or 2 to the first and 3 to the second etc.
Which assignment of these minimizes the total
probability of missing an update. ? It is possible to
determine this assignment (and in a computationally
efficient manner) under an important assumption about
the update probability distribution , which we state
below.

Fig 3. Update Probability Distributions

probability density function representing the update
probability of any update process is a constant within any
interval'.

Let's say we have i such multiple update intervals.
Suppose we poll Ki times in an interval i. What is the
probability of missing an update in the interval i now ?
We poll at uniform sub-intervals within interval i as
shown in Fig 4. We will miss an update in interval i if
and only if the two updates occur together in any one of
the Ki sub-intervals. The probability of both updates
occurring in a particular sub interval is given by:
(PrA a i) * (PrB a i) = PrAPrBt2/K?

......................... I k - 4
sub polling Ki times
intervd

Fig 4. Polling in a multiple update interval.

where PrA and PrB are the probability densities of A and
B in that interval respectively. The probability that two
updates occur together in any of the Ki sub-intervals is
simply:
Ki*(PrA t / ~ ~) * (prB mi) = PrAPrBt2/Ki

This expression is of the form Citz/Ki where Ci=PrAPrB is
a constant. Although we have illustrated the above for
the case where 2 updates can occur in an interval, the
expression representing the probability of missing an
update is of the form where 2 or even more updates can
occur in an interval.
Now the probability of missing any update in any of the i
multiple update intervals is:
zn i=l cit2/Ki

Note that we take all multiple updates to be of equal
length i.e., t. If t!e multiple update intervals are not
originally of equal length we can sub divide them into
intervals of length of the greatest common divisor of the
lengths of the (original) multiple update intervals.
We have to find Ki such that CKi=K
and C" i=l Ci/Ki

is minimized. This is a well known optimization problem
and the minima lies when:

Assumption: Within any multiple update interval i, the
probability of update of any individual process is
uniform throughout that interval. In other words the

This assumption is reasonable for relatively small intervals (such as
intervals of 5 min in the ATIS case).

References

Adali, S., K. S. Candan, et al. (1997). Ouen Caching and
Outimization in Distributed Mediator Systems.
Proceedings of the ACM SIGMOD
International Conference on Management of
Data, Tucson, AZ.

Ashish, N., C. A. Knoblock, et al. (2002). "Selectively
Materializing Data in Mediators by Analyzing
User Queries." International Joumal of
Cooperative Information Systems CIJCIS) 11(1-
2): 119-144.

Barish, G. and C. Knoblock (2002). An Exuressive and
Efficient Language for Information Gathering
on the Web. Proceedings of the Sixth
International Conference on AI Planning and
Scheduling (AIPS-2002) Workshop, Toulouse,
France.

Caching:Trends and Techniques. IEEE
Communications Magazine.

Recency Profiles for Data Deliverv on the Web.
Proceedings of the 28th VLDB Conference,
Hong Kong, China.

Web Data through Restricted Ouew Interfaces.
Poster Proceedings of the Tenth International
World Wide Web Conference, WWWIO, Hong
Kong, China.

(WHEN).

Database to Immove Freshness. Proceedings of
2000 ACM International Conference on
Management of Data (SIGMOD), Dallas.

Cho, J. and A. Ntoulas (2002). Effective Change
Detection Using Samuling. Proceedings of the
20th VLDB Conference, Hong Kong, China.

Representation Language. " Artificial
Intelligence 118(1-2): 163-196.

Davulcu, H., G. Yang, et al. (2000). Comuutational
Asuects-of Resilient Data Extraction from
Semistructured Sources. Proceedings of the
Nineteenth ACM SIGMOD SIGACT-SIGART
Symposium on Principles of Database Systems,
Dallas, TX.

Ouen Plans for Data Intemation. Proceedings
of the International Conference. on Data
Engineering (ICDE), San Jose, CA.

Gal, A. and J. Eckstein (2001). "Managing Periodically
Updated Data in Relational Databases: A
Stochastic Modeling Approach." Journal of the

Barish, G. and K. Obraczka (2000). World Wide Web

Bright, L. and L. Raschid (2002). Using Latency-

Byers, S., J. Freire, et al. (2001). Efficient Acquisition of

Cho, J. (2003). Web History and Evolution Archiving

Cho, J. and H. Garcia-Molina (2000). Svnchronizing a

Cohen, W. (2000). "WHIFU: A Word-based Information

Doan, A. and.A. Halevy (2002). Efficiently Ordering

48(6): 1141-1 183.

Kambhampati, S., U. Nambiar, et al. (2002). Havasu: A
Multi-Objective, Adaptive Query Processing
Framework for Web Data Integration. Tempe,

Knoblock, C. A., S. Minton, et al. (2001). "The Ariadne
Approach to Web-based Information
Integration." International Journal of
Cooperative Information Systems (IJCIS)
Special Issue on Intelligent Information Agents:
Theory and Auulications 10(U2): 145-169.

Kushmerick, N. (2000). "Wrapper Verification." World
Wide Web Journal 3(2): 79-94.

Labrinidis, A. and N. Roussopoulos (May 2000).
WebView Materialization. Proceedings of the
ACM SIGMOD International Conference on
Management of Data, Dallas, TX.

Popa, L., Y. Velegrakis, et al. (2002). Translating Web
&. Proceedings of the International
Conference on Very Large Databases (VLDB),
Hong Kong, China.

Evaluation of Queries in a Mediator for
WebSources. Proceedings of the ACM
SIGMOD Conference on Management of Data,
Madison, WI.

ASU CSE TR-02-005.

Zadorozhny, V., L. Raschid, et al. (2002). Efficient

,

